Generation of Active Protein Phosphatase 2A Is Coupled to Holoenzyme Assembly
نویسندگان
چکیده
Protein phosphatase 2A (PP2A) is a prime example of the multisubunit architecture of protein serine/threonine phosphatases. Until substrate-specific PP2A holoenzymes assemble, a constitutively active, but nonspecific, catalytic C subunit would constitute a risk to the cell. While it has been assumed that the severe proliferation impairment of yeast lacking the structural PP2A subunit, TPD3, is due to the unrestricted activity of the C subunit, we recently obtained evidence for the existence of the C subunit in a low-activity conformation that requires the RRD/PTPA proteins for the switch into the active conformation. To study whether and how maturation of the C subunit is coupled with holoenzyme assembly, we analyzed PP2A biogenesis in yeast. Here we show that the generation of the catalytically active C subunit depends on the physical and functional interaction between RRD2 and the structural subunit, TPD3. The phenotype of the tpd3Delta strain is therefore caused by impaired, rather than increased, PP2A activity. TPD3/RRD2-dependent C subunit maturation is under the surveillance of the PP2A methylesterase, PPE1, which upon malfunction of PP2A biogenesis, prevents premature generation of the active C subunit and holoenzyme assembly by counteracting the untimely methylation of the C subunit. We propose a novel model of PP2A biogenesis in which a tightly controlled activation cascade protects cells from untargeted activity of the free catalytic PP2A subunit.
منابع مشابه
Mechanisms of the Scaffold Subunit in Facilitating Protein Phosphatase 2A Methylation
The function of the biologically essential protein phosphatase 2A (PP2A) relies on formation of diverse heterotrimeric holoenzymes, which involves stable association between PP2A scaffold (A) and catalytic (C or PP2Ac) subunits and binding of variable regulatory subunits. Holoenzyme assembly is highly regulated by carboxyl methylation of PP2Ac-tail; methylation of PP2Ac and association of the A...
متن کاملOverexpression of AtPTPA in Arabidopsis increases protein phosphatase 2A activity by promoting holoenzyme formation and ABA negatively affects holoenzyme formation.
AtPTPA is a critical regulator for the holoenzyme assembling of protein phosphatase 2A (PP2A) in Arabidopsis. Characterization of AtPTPA improves our understanding of the function and regulation of PP2A in eukaryotes. Further analysis of AtPTPA-overexpressing plants indicates that AtPTPA increases PP2A activity by promoting PP2A's AC dimer formation, thereby holoenzyme assembling. Plant hormone...
متن کاملRunning title: AtPTPA is a critical regulator for protein phosphatase 2A Arabidopsis thaliana phosphotyrosyl phosphatase activator is essential for protein phosphatase 2A holoenzyme assembly and plays important roles in hormone signaling, salt stress response, and plant development
متن کامل
Arabidopsis PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR Is Essential for PROTEIN PHOSPHATASE 2A Holoenzyme Assembly and Plays Important Roles in Hormone Signaling, Salt Stress Response, and Plant Development1[W][OPEN]
PROTEIN PHOSPHATASE 2A (PP2A) is a major group of serine/threonine protein phosphatases in eukaryotes. It is composed of three subunits: scaffolding subunit A, regulatory subunit B, and catalytic subunit C. Assembly of the PP2A holoenzyme in Arabidopsis (Arabidopsis thaliana) depends on Arabidopsis PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR (AtPTPA). Reduced expression of AtPTPA leads to severe defec...
متن کاملStructural Mechanism of Demethylation and Inactivation of Protein Phosphatase 2A
Protein phosphatase 2A (PP2A) is an important serine/threonine phosphatase that plays a role in many biological processes. Reversible carboxyl methylation of the PP2A catalytic subunit is an essential regulatory mechanism for its function. Demethylation and negative regulation of PP2A is mediated by a PP2A-specific methylesterase PME-1, which is conserved from yeast to humans. However, the unde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2007